
Towards Dynamic Execution Environment for
System Security Protection against Hardware Flaws

Kenneth Schmitz† Oliver Keszocze∗† Jurij Schmidt∗† Daniel Große∗† Rolf Drechsler∗†

∗Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
†Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{kenneth, keszocze, grosse, drechsler}@cs.uni-bremen.de

Abstract—Attacks exploiting security flaws in software are
very common. They are typically addressed during the ongoing
software development process or by providing software patches.
Attacks making use of hardware related flaws via malicious soft-
ware recently gained popularity. Prominent examples are errata-
based, aging-related or, for example, the infamous Rowhammer-
attack. In this paper, we present an approach to detect software-
based attacks which exploit hardware flaws. Since the flaws are
typically triggered by characteristic instruction sequences, our
approach is implemented as a dynamic execution environment for
program monitoring at runtime. Several case studies underline
the effectiveness and the low overhead of our approach.

I. INTRODUCTION

Malicious software such as Trojans or viruses can be
accounted for major system failures and large financial
losses [1]. Most recently, cryptographic ransomware was used
for blackmailing companies to recover their encrypted data [2].
To protect the victim’s systems against such attacks, typically
several techniques (e.g. sandboxing, static/dynamic or signature
based analysis) have been implemented in antivirus software.
While there are different arguments for and against each of these
techniques, they have been developed from a software centric
perspective since malicious code uses flaws and vulnerabilities
in software as an attack vector.

Due to the shrinking feature sizes and the increasing
complexity of hardware, more flaws reach the silicon [3].
Hence, focusing on hardware and potential attacks exploiting
the flaws in silicon is very important and mandatory. In recent
years, many approaches for Trojan/backdoor identification in
hardware and Integrated Circuit (IC) counterfeit detection [4]
have been developed. Furthermore, defined areas for secure
software execution and data storage in hardware (e.g. ARM
TrustZone, Intel SGX, TPM) have been created, aiming for
the protection of data and the software itself during execution.
In contrast, this work takes the hardware perspective and aims
to protect systems against malicious software which exploits
hardware flaws as a new attack vector. In the following we
identify two major categories of hardware flaws where an
urgent protection is inevitable.

Errata-based defects and resulting system failures are the
first category. Almost every processor-generation has errata
instructions, which are typically addressed by microcode- or
BIOS-updates. Since modern hardware components are very

This work was supported by the German Federal Ministry of Education and
Research (BMBF) within the project SecRec under grant no. 16K1S0606K and
by the University of Bremen’s graduate school SyDe, funded by the German
Excellence Initiative.

complex, verification and test become more challenging and
flaws can remain undiscovered prior to the fabrication. Powerful
instruction set extensions to the x86 Instruction Set Architecture
(ISA) have been recently reported to result in unpredictable
behavior [5]. Undocumented features inside the ISA, which can
cause unpredictable system behavior, have been revealed [6]
as well.

The second category covers flaws which are inherited
from the feature sizes used to fabricate the components. The
Rowhammer-attack affects Random Access Memory (RAM)
and Solid-State Drives (SSDs) [7]. The malicious aging in
circuits/cores (MAGIC) [8] leads to very fast semiconductor
aging. Field Programmable Gate Array (FPGA)-based systems
are susceptible to this attack scenario [9] as well. Both attacks
exploit the basic properties of the feature sizes in order to make
the system fail early or unexpectedly. All of these flaws can be
induced by regular execution of regular software. Unfortunately,
antivirus software typically fails if confronted with scenarios,
which explicitly target hardware flaws.

In this paper, we propose a novel hardware-centric approach
based on the following idea: All of the presented attacks exploit
the hardware flaws through characteristic instruction sequences.
Since detecting these instructions sequences is possible at the
instruction level, we present an engine for instruction-screening.
We use the Quick Emulator (QEMU) [10], providing a code
translation layer that grants access to single instructions during
execution. Our approach detects all user-defined instruction
(search-) patterns in the instruction sequence of the executed
program.

Unfortunately, a given platform can be susceptible to more
than one attack. Therefore, the approach must allow for
searching of all instructions at the same time. In addition,
it must detect spatially distributed instruction sequences in
programs to protect against advanced attacks (e.g. clflush-
based Rowhammer-attacks) and by this providing a general
scheme in contrast to existing solutions. As a consequence, we
have identified the powerful string matching algorithm Aho-
Corasick [11] serving as basis for screening the instructions.
Parallel matching of search patterns, while maintaining linear
complexity with respect to the input sequence plus the number
of simultaneously matched search patterns, is the strength
of this algorithm. To handle the above mentioned spatially
distributed instruction sequences in programs, we extended
Aho-Corasick to match interrupted instruction sequences while
maintaining the same algorithmic complexity. In our exper-
iments, the extended algorithm was able to cope with the

execution speed (and the resulting high instruction-throughput)
at the translation layer of QEMU at runtime.

The proposed approach also addresses software subroutines
which implement malicious behavior. If the functionality of an
application is known, certain instruction patterns can indicate
malicious intents. Examples can be office applications without
update functionality which contains instructions implementing
network communication, or the Linux built in copy command
using specific cryptographic instructions. These instructions
are implausible in this specific context and can indicate an
attack. The proposed approach can also recognize this behavior
during runtime and intervene if the operational security is at
risk.

II. RELATED WORK

Exploiting flaws in hardware and the protection thereof
is an ongoing challenge. In general, software is capable of
transitioning hardware to a state from where there is no recovery
but a hard system reset. Even physical, irreversible damage is
possible [12]. Identifying software with malicious intents is a
very complex problem and has been thoroughly investigated
(for an overview see for instance [13]). It has been shown
that behavioral detection, signature extraction and improving
resilience to automatic mutations still fail in many scenarios
and remain a major challenge [14], [15]. In the software domain
regular viruses use sophisticated techniques in order to hide
their true intentions. Among these are self-decryption, oligo-
, poly- or metamorphism which change the appearance (in
terms of instruction sequences and behavior) during or prior to
execution. Attacks against hardware flaws often require specific,
immutable sequences of instructions (e.g. errata-related) to
trigger the erroneous behavior.

The authors of the Micro-Architectural Side Channel Attack
Trapper (MASCAT) [16] relied on static code analysis in order
to scan for microarchitectural attacks. The work focuses on
fully automated off-line analysis of applications (e.g. for app
stores). Thus, this approach does not provide any protection
as soon as the binary has reached the target system.

For the particular example of the Rowhammer-attack, the
authors of [17] identified circumstances, where the attack can
escape the known clflush-pattern and still remain effective.

In [18], a sandboxing technique has been proposed which
restricts access to memory region within the host’s address
space. The scheme protects the host program from reads and
writes by its guests and it allows the restriction of the instruction
set available to guests. Hence, a full notion of which instructions
are permissible for every individual program is required.

There are concepts capable of repairing, patching or cor-
recting the erroneous system behavior on the hardware level.
Such a detection scheme, based on errata and internal signal
observation, has been presented in [19] and [20]. Furthermore,
the overall system state can be monitored and corrected
on hardware level, as proposed in [21] and [22]. All of
these approaches require hardware modifications which are
impractical after fabrication.

III. PRELIMINARIES

QEMU and its internal translation method as well as the the
efficient Aho-Corasick string matching algorithm are the key
components for our approach and are reviewed in this section.

Host Code

TCG Operations

Guest Code

gen_intermediate_code()

tcg_gen_code()

Fig. 1. Regular translation flow

A. Quick Emulator (QEMU)

QEMU is an open-source cross-platform environment for
virtualization and emulation. It can utilize the Kernel Virtual
Machine (KVM) for hardware acceleration. Two different
modes of operation are provided:

A complete host system (including peripheral devices) can
be mimicked to the guest system when the full virtualization
environment is used. KVM is leveraged to speed up guest
systems to near native execution speed and I/O redirection
accelerates peripheral hardware access.

The second mode provides an user-mode emulation, which
executes a single program as a guest application on a host
system. When a program is run in user-mode emulation,
independence from compiler versions and architectures is
desired. The Tiny Code Generator (TCG) manages the code
translation from the guest architecture to the host architecture.
Guest instructions are translated to a machine-independent
intermediate notation which is recompiled for the host’s archi-
tecture. Several optimizations are applied in this step during
emulation mode. All guest instructions are fully accessible at
the TCG interface and can be monitored at runtime.

Figure 1 shows the relevant part of QEMU’s flow, which
is essential for this work and where our approach is included.
All TCG operations are derived from the guest application’s
code. This intermediate language is processed by the TCG and
translated to the target architecture. Finally, the TCG-generated
target code is executed on the host’s hardware.

B. The Aho-Corasick String Matching Algorithm

The Aho-Corasick algorithm is a dictionary-based string
matching algorithm. It simultaneously locates all strings of
a finite set of search strings within an input sequence. The
algorithm is known to be highly scalable [23]. A dictionary
is computed in advance – resulting in a tree structure called
trie – to achieve the desired complexity which is linear in
the length of the input plus the number of matched entries.
A trie or a prefix-tree is a data structure which is typically
used to store characters for search operations on character
sequences. This specialized search-tree, implements storage for
multiple character sequences simultaneously. The trie implicitly
compresses the stored data, since shared prefixes are stored
only once.

An example is shown in Figure 2. Starting from the
root node, the algorithm traverses the tree while matching
individual characters from the dictionary. The tree represents
the entire dictionary {{a}, {a,b,a}, {c,a,b,d}}. All dotted nodes

a

c

b a

a b d

Fig. 2. Basic example for a dictionary-tree of {{a}, {a,b,a}, {c,a,b,d}}

Host Code

TCG Operations

Instruction Matching

gen_intermediate_code()

tcg_gen_code()

Guest Code

Fig. 3. Extended translation flow

are intermediate nodes. The solid nodes, in contrast, are target
nodes representing a successful detection. Additional arcs have
to be computed to allow fast transitions between failed string
matches. Connections denoted by dotted blue arcs are called
suffix arcs, which point to the longest possible strict suffix
in the graph. They are computed in linear time by traversing
the dotted arcs of a node’s parent until the child is matching
the character of the arc’s target node. Connections denoted by
dashed green arcs are called dictionary suffix arcs, which point
to the next reachable solid node following blue arcs. These are
computed in linear time as well by traversing the dotted arcs
until a solid node is found.

IV. DYNAMIC EXECUTION MONITORING

In this section, the implementation of our approach is
presented in detail. Searching for malicious intents in soft-
ware requires access to all program instructions. Hence, we
conducted profiling experiments to determine the interface in
QEMU’s architecture, where the complete instruction sequence
can be monitored. Figure 3 shows where our approach has
been implemented in QEMU’s architecture. The profiling
experiments also revealed the TCG as the key-component
for QEMU’s speed. Subsequently, all extensions to this layer
must be efficient in terms of their computational complexity to
preserve the performance. The TCG implements the boundary
after which code will be executed by the host’s processor.
Hence, the proposed solution detects malicious instruction
sequences prior to translation in order to realize the system
protection.

Since instruction screening is similar to searching for a
matching character sequence in a string, the Aho-Corasick
algorithm was chosen due to its strengths in the parallel
matching of search patterns. However, in contrast to regular
string matching, the suspect instruction sequences are rarely a
sequence of consecutive elements. Hence, we extended the basic

l a b e l : l a b e l :
mov (A) , %eax mov (A) , %eax
mov (B) , %ebx mov (B) , %ebx
c l f l u s h (A) c l f l u s h (A)
c l f l u s h (B) c l f l u s h (B)
jmp l a b e l (∗)

jmp l a b e l

Fig. 4. Pseudo assembly for Rowhammer-attacks

Aho-Corasick algorithm to cope with the spatial distribution
of instructions inside an executable.

A. Extension of the Aho-Corasick String Matching Algorithm

The following example can motivate this necessity in a
clear fashion. The loop in Figure 4 implements a clflush-based
Rowhammer-attack.

The asterisk character represents an arbitrary instruction or
instruction sequence within the malicious sequence. Strictly
searching for the left pattern will ignore the example provided
on the right, although it will yield the same effect. Hence, our
approach must be able to skip intermediate instructions. In
order to achieve this functionality, two major extensions were
necessary:

1. The spatial distribution of instructions in an sequence has
been addressed by Don’t-Care (DC) nodes in the language
of the dictionary. These nodes provide the algorithm with
the capability to skip intermediate segments until the next
valid instruction is found.

2. Since the performance benefit granted by efficient transi-
tioning between failed string-matches in the dictionary-
tree is essential, complex trees with an arbitrary amount
of DC nodes are impractical. Hence, we implemented a
partial recompilation and modification of the dictionary-
tree during runtime. After a DC node is reached, the
remainder after the DC node is inserted at the root node.
This addresses both requirements: The ability to search for
all patterns simultaneously is preserved, and the reliable
detection of spatially separated instruction segments is
possible. Finally, a bidirectional connection between each
DC node with its associated remainder is stored. This
establishes the reattachment of the remainder to its former
position in linear time, when the search is completed.

The proposed method is implemented as a non-greedy pattern
search procedure: After a sequence of ignored instructions (DC
instructions), the first matching instruction will be interpreted
as the end of the DC-sequence. Finally, the dictionary-tree
will be reverted to its initial state (with respect to the active
search-pattern).

B. Search-Pattern Matching

A valid search-pattern must contain all instructions necessary
for a successful detection. If the pattern is present in the
executed binary, the implemented solution will detect the
sequence in the binary-stream during execution. However,
depending on the strength of this search pattern, false-positives
are possible, since the spatial range of the search algorithm can
exceed meaningful boundaries such as methods, blocks or loop-
bodies. These false-positives are only false in the sense, that

they will not have the intended or malicious effect. Nevertheless,
the implementation will only report the presence of a search
pattern if the given instruction sequence is actually present in
the binary. In contrast, if the provided search pattern is fully
specified (no DCs), false-positives can not occur.

In the following, a compact example will clarify the search-
pattern matching procedure.
Figure 5 provides an example of a initial dictionary-tree.
It shows the computed tree for the following dictionary:
{{i1, i2}, {i1, ∗, i3}, {i0, ∗, i5}}. These sequences can be char-
acterized and numbered as follows.

1. {i1, i2} – Instruction i1 is directly followed by i2 for a
successful detection.

2. {i1, ∗, i3} – Instruction i1 followed by an arbitrary number
of instructions until instruction i3 is found.

3. {i0, ∗, i5}– Instruction i0 followed by an arbitrary number
of instructions until instruction i5 is found.

This compact tree representation stores all active search-
patterns. Each instruction from the instruction-stream will be
matched with either the root-node or with the following node
in case of an active detection. After a DC node is reached, the
dictionary-tree is altered. Figure 6 shows the temporal insertion
of the instruction sequence’s remainder at root level after the
detachment from the DC node according to sequence 2. This
way, an arbitrary amount of instructions can be skipped until
the remainder is matched and the search-pattern is completed.
Figure 7 shows the inserted remainder at root level according to
sequence 3. In order to maintain low computational complexity,
the dotted arcs indicate the connection for reattachment after
completion of a search-pattern.

The resulting matching procedure is shown in Figure 8.
Since all sequences start with i0 or i1, they will be compared
with each element of the input instruction sequence from the
executed program. This is reflected in the comparison of all
outgoing arcs from the root node of the initial dictionary-tree.
After matching i0 from seq. 3 and i1 from seq. 2, the DC
nodes are expanded and the algorithm compares the following
instructions with instruction i5 and i3. If the sequences are
completed, the tree expansion is reverted to its initial state
and attached at the respective DC node. This maintains a
compact tree during runtime for faster traversal and reflects
the non-greedy matching approach. Seq. 1 does not require a
tree expansion, since i1 is directly followed by i2 in order to
match successfully.

In summary, we have presented an efficient instruction-
screening algorithm integrated as part of QEMU. At the heart
of the algorithm we employ a well known string matching

i0

i1

dc

i2

dc i3

i5

Fig. 5. Computed tree

i0

i1

i3

dc

i2

dc

i5

Fig. 6. Temporal expanded tree for i3

i0 i1 i3i5

dc i2 dc

Fig. 7. Temporal expanded tree for i3 and for i5

technique which was extended such that a variety of accidental
and malicious attacks against hardware flaws can be detected.
A major challenge was the spatial distribution of instructions
inside a given search-pattern. The effective screening of
executables during execution becomes possible.

In the next section our experimental evaluation is presented.

V. CASE STUDIES AND RESULTS

For the evaluation of our approach we need a set of bench-
marks. However, programs with malicious intents focusing
on hardware flaws are typically not widely available. Hence,
we integrated specific instruction sequences – implementing
different attacks – as a set of characteristic benchmarks. The
different scenarios, used to create a set of handcrafted programs,
are briefly presented and followed by a detailed discussion of
our results.

A. Creation of Benchmarks

A variety of malicious instruction patterns were added to
some well known Linux user-land programs. One category of
benchmarks includes errata-related bugs. The other includes
the Rowhammer-attack and a cryptographic algorithm inside
the source code. In the following, we describe the different
characteristic flaws which have been considered in our bench-
marks.

Fig. 8. Simultaneous sequence matching

1) Errata-Instructions: Several silicon bugs have been
discovered after the developed and fabricated products have
been shipped. In general, until a fix for such issues is available,
there is a time window in which systems are susceptible to
attacks exploiting these bugs. In the following we give two
prominent examples which we also used in our benchmarks:

• The Cyrix Coma-Bug [24] is a flaw in the x86 processor-
series (6x86, 6x86L, and 6x86MX) manufacturer by Cyrix.
When executed, a non-privileged program is able to lock
the processor completely.

• The Pentium f00f-Bug [25] can transition the affected
processors to a state, where only a reset is able to recover
the system from this state. The flaw affects the locked
compare and exchange instruction of eight bytes in register
eax.

2) Active Attack Scenarios: Beside flaws in the fabricated
product, there are attacks that exploit vulnerabilities of architec-
tural features or the specific feature size of which components
are made. Again, provide two concrete example to be used
later:

• The Rowhammer-effect is an ongoing threat [7].
The origin of this susceptibility is the decreasing feature
size which is used to fabricate dynamic RAM (DRAM)
chips (even in hand held devices [26]). It is possible to
exploit this property with the purpose of data falsification
or to escalate privileges (e.g. to gain administrative rights).

• Ransomware is an increasing threat. Victims to ran-
somware-based attacks often are left with encrypted data
with the purpose to blackmail the victims to gain back
their data. With the availability of dedicated cryptographic
instructions (e.g. AES-NI), cryptographic routines are
sped up significantly. These patterns contain characteristic
instruction sequences which are detectable.

The provided benchmarks are based on well-understood
instruction patterns and were chosen for demonstration. Our
proposed approach is only applicable if the malicious instruc-
tion pattern is known in advance.

B. Evaluation

Basis for the implementation of our approach is the latest
stable version of QEMU (2.8.0). The translation inside QEMU
has been extended while the internal data structures and other
functions have been kept. All programs have been executed
in QEMU and invoked by passing a 10 Megabyte file. We
tested our approach for different the scenarios, i.e. errata-based,
Rowhammer and a cryptographic routine.

Modified versions of well-known Linux user-land programs
(copy, diff and tar) have been used as benchmarks, since
these could easily be compromised without being noticed.
Additionally, gzip was augmented with multiple bug- or
attack-scenarios, such that the benefit of the Aho-Corasick
algorithm based screening approach of QEMU could be
examined in detail.

Table I summarizes the obtained results. The first column
contains the name of the augmented program. Each program
was run with different bug- or attack-scenarios, which is trig-
gered by a specific instruction sequence which was included in
the respective binary. Each bug- or attack-scenario individually

TABLE I
RESULTS SUMMARY

Application Details Execution Details Found

Name Incl. Bug Native QEMU Extension Increase

– – – – – – [msec] [off][msec] [on][msec] [in %]

cp † 27 177 193 9.04 X
cp ‡ 29 161 189 17.39 X
cp ? 27 178 202 13.48 X
cp ∗ 28 180 185 2.78 X

diff † 1 140 164 17.14 X
diff ‡ 2 158 162 2.53 X
diff ? 2 165 168 1.82 X
diff ∗ 1 157 162 3.18 X

tar † 34 260 271 4.23 X
tar ‡ 32 268 276 2.99 X
tar ? 36 243 265 9.05 X
tar ∗ 35 230 255 10.87 X

gzip † ‡ 138 369 394 6.78 X
gzip ‡ ? 132 388 408 5.15 X
gzip ? ∗ 147 373 407 9.12 X
gzip † ‡ ? 140 394 452 14.72 X
gzip † ‡ ? ∗ 151 367 423 15.26 X

† Cyrix Coma-Bug included in binary.
‡ Intel Pentium f00f-Bug included in binary.
? Rowhammer (Memory Disturbance) attack included in binary.
∗ Random assembler pattern included in binary.

requires specific search patterns. These configurations are
indicated by the symbols next to the program name.

The second column presents the results of a native execution
on the host system. No virtualization (i.e. KVM) or emulation
environment was used. This column present the regular
execution time (all in milliseconds) as experienced by any
user on any system. A compute server, equipped with a Quad-
Core Xeon Processor (Intel Xeon E3-1275) running Fedora
Linux, was used to run the benchmarks.

In the third column (QEMU) shows the runtime of the
respective binaries in emulation mode of QEMU (no KVM
support). This execution represents the golden reference for
our own implementation. Next, the fourth column contains the
results of our extension to QEMU (indicated by “Extension”).
During this execution, our methodology was active and screened
for the provided search pattern.

Our results are presented in the fifth column. It contains
the execution time of the augmented binaries by the provided
percentage with respect to the golden reference results (100%).
Finally, the last column contains indicates, that each bug- or
attack-scenario was successfully detected. It must be noted,
that all search pattern were active during all of the experiments
without yielding neither false-negatives nor false-positives.

C. Observations

The experimental results indicate the successful system
protection against the characteristic bug- or attack-scenarios as
discussed before. It can be noted, that the increase in runtime
during active detection is less than 18% in any given case with
respect to the golden reference results. An average increased
of runtime of 7.8% was observed. Obviously, there is a static

runtime penalty in comparison to the native execution without
the translation layer introduced by QEMU. Interestingly, there
is no additional penalty, when multiple search patterns are
matched simultaneously by our methodology.

1) Errata-Instructions: Search patterns such as the the coma-
and the f00f-bug can be reliably detected. Due to the severity
of these bugs, susceptible processors would transition to a
non-recoverable state which has to be prevented. Since almost
every processor generation will yield a large errata document,
this methodology has a possibly large field of application.
Third-party legacy software could contain malicious instruction
sequences by accident. In these cases our methodology provides
system protection while the software can still be used. In order
to determine the robustness of this extension, we included
a random (widely distributed, but unique) search pattern to
the binary. The presence of this random patterns was also
determined reliably.

2) Active Attack Scenarios: For active attack scenarios we
chose the Rowhammer-attack (based on the clflush instruction).
The pattern, implementing the Rowhammer-attack, was detected
by the extension to QEMU since it can be mapped to a specific
instruction sequence. It must be noted, that a Rowhammer-
attack can also be induced by behavioral cache-attacks [27]
which can be detected, if the instruction sequence is known
in advance. Additionally, a standalone program was run,
implementing a minimalistic cryptographic AES-function. We
extracted the characteristic portion of an AES round as a
search pattern and fed it to our extension. The detection of an
integrated AES subroutine was reliable in our experiments.
From a technical point of view, the detection of AES-NI
instructions is even more reliable, since a specific opcode
will be present in the instruction-stream which can be detected
easily.

This discussion of results can be concluded as follows:
The proposed approach has proven to be effective in the
domain of runtime instruction screening with a focus on
hardware flaws. Our intended use-case for this methodology is
one complete execution inside QEMU. After the absence of
malicious instruction sequences has been verified, the software
can be run natively on the host’s hardware. This way, the user
can be sure (even in case of legacy or third-party software) that
no harmful instruction sequences will compromise the host
system. However, from this work the need for a database (such
as well known for software-viruses) becomes imperative.

VI. CONCLUSION AND FUTURE WORK

We have introduced a framework to detect software-based
attacks which exploit hardware flaws. Our approach performs
instruction screening during dynamic program execution inside
QEMU. The efficiency of our solution is based on an extended
Aho-Corasick string matching algorithm which allows for
parallel matching of search patterns while maintaining a linear
complexity. Our approach brings protection against hardware
flaws which reach from simple errata-based flaws in fabricated
hardware to feature size related vulnerabilities. Many of these
can be fixed by BIOS, microcode or firmware updates, but
typically several month pass until they are readily available.
An alternative is additional hardware which can prevent such
attacks [22]. But this hardware is expensive and impracticable

after fabrication. In contrast the proposed solution offers the
possibility to run software in a safe environment, given that
the speed degradation is acceptable and search patterns are
provided. As future work we propose screening directly on the
KVM layer to make this approach applicable to fully virtualized
environments.This way this approach can be transferred to
the kernel space, thus establishing an even lower bound of
protection and increased execution speed.

REFERENCES

[1] E. C. R. Council, “The economic impacts of the august 2003 blackout,”
Washington, DC, 2004.

[2] J. Hernandez-Castro, E. Cartwright, and A. Stepanova, “Economic
analysis of ransomware,” CoRR, 2017.

[3] P. Patra, “On the cusp of a validation wall,” Design Test of Computers,
pp. 193–196, 2007.

[4] U. Guin, D. DiMase, and M. Tehranipoor, “Counterfeit integrated circuits:
detection, avoidance, and the challenges ahead,” Journal of Electronic
Testing, pp. 9–23, 2014.

[5] A. Baumann, “Hardware is the new software,” in HotOS, 2017, pp.
132–137.

[6] C. Domas, “Breaking the x86 ISA,” Black Hat, 2017.
[7] O. Mutlu, “The rowhammer problem and other issues we may face as

memory becomes denser,” in Design, Automation and Test in Europe,
2017, pp. 1116–1121.

[8] N. Karimi, A. K. Kanuparthi, X. Wang, O. Sinanoglu, and R. Karri,
“(magic): Malicious aging in circuits/cores,” TACO, p. 5, 2015.

[9] H. Zhang, L. Bauer, M. A. Kochte, E. Schneider, H. J. Wunderlich, and
J. Henkel, “Aging resilience and fault tolerance in runtime reconfigurable
architectures,” Trans. on Computers, pp. 957–970, 2017.

[10] F. Bellard, “QEMU, a fast and portable dynamic translator.” in USENIX
ATC, 2005, pp. 41–46.

[11] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communications of the ACM, pp. 333–340, 1975.

[12] P. Jayaraman and R. Parthasarathi, “A survey on post-silicon functional
validation for multicore architectures,” ACM Comput. Surv., pp. 61:1–
61:30, 2017.

[13] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware:
from a survey towards an established taxonomy,” Journal in Computer
Virology, pp. 251–266, 2008.

[14] A. A. E. Elhadi, M. A. Maarof, B. I. Barry, and H. Hamza, “Enhancing
the detection of metamorphic malware using call graphs,” Computers &
Security, pp. 62–78, 2014.

[15] S. Alam, R. N. Horspool, I. Traore, and I. Sogukpinar, “A framework
for metamorphic malware analysis and real-time detection,” Computers
& Security, pp. 212–233, 2015.

[16] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Mascat: Stopping microarchi-
tectural attacks before execution.” IACR, p. 1196, 2016.

[17] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and
T. Austin, “Anvil: Software-based protection against next-generation
rowhammer attacks,” ACM SIGPLAN Notices, pp. 743–755, 2016.

[18] B. Ford and R. Cox, “Vx32: Lightweight user-level sandboxing on the
x86,” in USENIX ATC, 2008, pp. 293–306.

[19] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder, and
J. Torrellas, “Patching processor design errors with programmable
hardware,” Microelectroics Journal, pp. 12–25, 2007.

[20] S. Narayanasamy, B. Carneal, and B. Calder, “Patching processor design
errors,” in ICCD, 2006, pp. 491–498.

[21] I. Wagner and V. Bertacco, “Caspar: Hardware patching for multicore
processors,” in Design, Automation and Test in Europe, 2009, pp. 658–
663.

[22] K. Schmitz, A. Chandrasekharan, J. G. Filho, D. Große, and R. Drechsler,
“Trust is good, control is better: Hardware-based instruction-replacement
for reliable processor-ips,” in ASP-DAC, 2017, pp. 57–62.

[23] R. R. S.M. Vidanagamachchi, S.D. Dewasurendra and M.Niranjan,
“Commentz-walter: Any better than aho-corasick for peptide identifi-
cation?” in Int’l Journal of Research in Comp. Science, 2012, pp. 33–37.

[24] A. D. Balsa, “The cyrix 6x86 coma bug,” https://lkml.org/lkml/1997/11/
12/129, 1997.

[25] R. R. Collins, “The intel pentium f00f bug description and workarounds,”
Dr. Dobb’s Journal, 1997.

[26] M. S. Inci, T. Eisenbarth, and B. Sunar, “Hit by the bus: Qos degradation
attack on android,” in Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, 2017, pp. 716–727.

[27] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The
spy in the sandbox - practical cache attacks in javascript,” CoRR, 2015.

